а√天堂中文在线资源bt种子,菠萝蜜视频app,亚洲精品日韩一区二区电影,蜜臀AV人妻久久无码精品麻豆

AC source power & DC source power manufacturing factory

Selection of DC Power Supply

As for the choice of DC power supply, is it a transistor linear DC power supply or a SCR DC power supply or a switching power supply? This must be adopted reasonably according to the specific situation. These three kinds of circuits are widely used both at home and abroad, each with its own characteristics.
SCR DC power supply, with its powerful output power, can not be replaced by transistor linear DC power supply and switching power supply. Transistor linear DC power supply is widely used because of its high accuracy and superior performance; switching power supply reduces its volume and weight in varying degrees by eliminating heavy power frequency transformers, and is also widely used in many situations where the output voltage and current are relatively stable.
ONE. The circuit structure of SCR DC regulated power supply is as follows:

SCR is a device to control voltage. Because the conduction angle of SCR can be controlled by circuit, the conduction angle of SCR varies with the output voltage Uo. The voltage Ui added to the primary transformer also changes.

That is to say, only a part of 220V AC power is added to the primary transformer after being controlled by SCR. When the output voltage Uo is higher, the conduction angle of SCR is larger, and most of the local voltage is "released" by SCR (as shown in the figure above), so the voltage added to the primary transformer, i.e. Ui, is higher. Of course, the output voltage after rectification and filtering is also higher.
When the output voltage Uo is very low, the conduction angle of SCR is very small. Most of the local voltage is "jammed" by SCR (as shown in the figure below). Only the very low voltage is added to the primary transformer, that is, the Ui is very low. Of course, the output voltage after rectification and filtering is very low.

TWO. The main circuit of the transistor linear DC power supply is as follows:

In fact, the transistor linear DC power supply is a series of high-power transistors (actually many in parallel) at the output end of the SCR DC power supply. As long as the control circuit outputs a small current to the base of the transistor, it can control the output current of the transistor, so that the power supply system can stabilize the voltage on the basis of the SCR power supply. Secondly, the voltage stability of the transistor linear DC power supply is better than that of the switching power supply or the controllable silicon DC power supply by 1-3 orders of magnitude. However, power transistors (also known as regulators) generally occupy 10 volts of voltage. Each ampere of output current consumes 10 watts more power inside the power supply. For example, the loss of 500V 5A power supply on the power transistor is 50 watts, which accounts for 2% of the total output power. Therefore, the efficiency of transistor linear DC power supply is slightly lower than that of SCR DC power supply.

THREE. The main circuit of the switching power supply is as follows:

From the circuit, it can be seen that after rectifying and filtering, the city power transformer will be transformed into 311V high voltage, and after orderly operation of K1-K4 power switch, it will be transformed into pulse signal added to the primary stage of high frequency transformer, and the pulse height will always be 311V. When K1 and K4 are turned on, 311V high-voltage current flows into primary transformer through K1 and outflows through K4, forming a forward pulse in primary transformer. Similarly, when K2 and K3 are turned on, 311V high-voltage current flows into primary transformer through K3 and outflows through K2, forming a reverse pulse in primary transformer. In this way, a series of forward and reverse pulses are formed in the secondary transformer, and DC voltage is formed after rectification and filtering. When the output voltage Uo is high, the pulse width will be wide. When the output voltage Uo is low, the pulse width will be narrow. Therefore, the switch is actually a device to control the pulse width.

In the absence of special volume requirements, transistor linear DC power supply is generally provided to users, which is mainly:
1. The transistor linear DC power supply has good accuracy (1-3 orders of magnitude better than switching power supply or controllable silicon power supply). It is suitable for many occasions, and the general users will not raise performance, accuracy and technical indicators.
2. Easy to maintain, because most users are familiar with transistor linear DC power supply maintenance personnel, there are also spare parts in this regard. Maintenance tools, a multimeter can basically solve the problem, more careful electricians can also start.
3. After maintenance, there are no sequelae, the fault can be completely eliminated and the performance can be completely restored. As long as a power supply is properly used and repaired in time, it will not be a problem if it is used for 10 years.

In the absence of special volume requirements, switching power supply is not particularly respected to users, which is mainly:
1、At present, all kinds of PWM integrated chips used in switching power supply are mainly designed from the point of view of small range of output voltage and stable output current.
But the so-called PWM chip is a kind of pulse width modulator. When the output voltage is high and the output current is large, the switching-on time of the internal power supply is longer and the switching-off time is shorter.

When the output power is small, the pulse width is narrower:

However, the pulse width can not be unlimited narrowing, the range of pulse width change, that is, the adjustment range is only 10%-90%. This characteristic determines that this kind of PWM chip is not suitable for a so-called continuous adjustable power supply starting from zero voltage. For example, a 500V5A switching power supply has the widest control pulse when its output reaches 500V5A, such as:

When the output voltage drops to 50V5A, the width of the control pulse decreases to 10% of the widest pulse, such as:

It's down to the narrowest. If the output voltage and current continue to decline, the control pulse is required to continue to narrow, but the PWM circuit can not meet, then the circuit becomes intermittent work, such as:

Pulse sometimes does not exist, bursts of power supply will emit noise, ripple and other will become larger, electrical performance will become worse, so-called "low-end instability", in fact, has become substandard products.
2、Switching power supply has polluted power grid and radiation interference. If a radio is inserted near the high-power switching power supply, the radio will not be able to radio and will interfere with the TV signal. Some units of instruments and meters appear strange interference, and this power grid pollution is not irrelevant. There are strict regulations in the national standards for such interference and radiation.
3、Maintenance is difficult and the risk of scrapping the whole machine is high.
Because switching power supply operates at high frequency, the higher the frequency, the smaller the main transformer. However, with the increase of frequency, the negative effects of various distribution parameters are also obvious. Therefore, the smaller the distribution parameters, the better, the more exquisite the process design, the shortest the lead and the closer the components are. Because of the dense components, it is difficult to maintain. In addition, because of the difference between the circuit and the linear power supply, the technical quality of the maintenance personnel is high, and the multimeter is no longer helpful. It is necessary to use the oscilloscope to observe the working state of each point of the circuit.
More importantly, as switching power transistors work under high voltage, once damaged, they are generally four, that is, all the bad light, emit a loud explosion sound, and further burn down the pulse transformer which generates the control signal, thus affecting the printed circuit board, almost burning a piece, as long as there is such, the whole power source newspaper. The risk of scrapping is high.

Fortunately, after years of manufacturing and R&D practice, we have solved many technical problems. At present, the two switching DC power supply (standard and intelligent) developed and manufactured in the range of 800V1000A work very steadily, and the failure rate is very low. The shortcomings of the switched DC power supply listed above have been greatly improved.
Recommend Products
Online service
Service Hotline
86-769-89616802
86-13602353727

ADMIRE POWER
好男人免费资源视频在线观看 | 好涨嗯太深了嗯啊用力别停| 老子影院午夜伦手机不卡国产| 亚洲精品电影院| 国产成熟女人性满足视频| 野花社区高清在线观看| 久久久久精品免费A片喷水| 999国内精品永久免费视频| 动漫AV永久无码精品每日更新| 精品成品国色天香卡一卡二| 日本三级香港三级人妇99| 男人撕开奶罩揉吮奶头| 少妇激情av一区二区| 成人免费AA片在线观看| 最好看的2019中文字幕高清| 无码精品一区二区三区免费视频| 野花高清在线观看免费 | 另类国产精品一区二区| 亚洲欧美日韩中文字幕一区二区三区| 97亚洲色欲色欲综合网| 亚洲av日韩精品久久久久久a | 亚洲自偷自拍另类小说| 边做饭边被躁欧美三级| 特大黑人娇小亚洲女| 综合网日日天干夜夜久久| 国产睡熟迷奷系列网站| 两个人在线观看完整版| 男女作爱全部免费观爱| 精品日产乱码卡一卡2卡三 | 免费精品国产自产拍在线观看图片 | 狠狠色狠狠色综合久久| XX娇小嫩XX中国XX| 中文午夜乱理片无码AⅤ| 少妇毛多水多| 国精无码欧精品亚洲一区 | 成年免费a级毛片免费看| 国产精品久久久久久婷婷| 国产第一页屁屁影院| 中文字幕精品一区二区三区| 我被公满足舒服爽视频| 我的奶头被客人吸的又肿又红|